The Cortical Protein Num1p Is Essential for Dynein-Dependent Interactions of Microtubules with the Cortex

نویسندگان

  • Richard A. Heil-Chapdelaine
  • Jessica R. Oberle
  • John A. Cooper
چکیده

In budding yeast, the mitotic spindle moves into the neck between the mother and bud via dynein-dependent sliding of cytoplasmic microtubules along the cortex of the bud. How dynein and microtubules interact with the cortex is unknown. We found that cells lacking Num1p failed to exhibit dynein-dependent microtubule sliding in the bud, resulting in defective mitotic spindle movement and nuclear segregation. Num1p localized to the bud cortex, and that localization was independent of microtubules, dynein, or dynactin. These data are consistent with Num1p being an essential element of the cortical attachment mechanism for dynein-dependent sliding of microtubules in the bud.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cortical Num1p Interacts with the Dynein Intermediate Chain Pac11p and Cytoplasmic Microtubules in Budding Yeast

Num1p, a cortical 313-kD protein, controls cytoplasmic microtubule (cMT) functions and nuclear migration through the bud neck in anaphase cells. A green fluorescent protein (GFP)-Num1p fusion protein localizes at the bud tip and the distal mother pole of living cells, apparently forming cMT capture sites at late anaphase. In addition, galactose-induced GFP-Num1p is seen at the bud neck and in l...

متن کامل

Fission yeast Num1p is a cortical factor anchoring dynein and is essential for the horse-tail nuclear movement during meiotic prophase.

During meiotic prophase in the fission yeast Schizosaccharomyces pombe, the nucleus oscillates between the two ends of a cell. This oscillatory nuclear movement is important to promote accurate pairing of homologous chromosomes and requires cytoplasmic dynein. Dynein accumulates at the points where microtubule plus ends contact the cell cortex and generate a force to drive nuclear oscillation. ...

متن کامل

Determinants of S. cerevisiae Dynein Localization and Activation Implications for the Mechanism of Spindle Positioning

BACKGROUND During anaphase in budding yeast, dynein inserts the mitotic spindle across the neck between mother and daughter cells. The mechanism of dynein-dependent spindle positioning is thought to involve recruitment of dynein to the cell cortex followed by capture of astral microtubules (aMTs). RESULTS We report the native-level localization of the dynein heavy chain and characterize the e...

متن کامل

Influence of taxol and CNTs on the stability analysis of protein microtubules

Microtubules are used as targets for anticancer drugs due to their crucial role in the process of mitosis. Recent studies show that carbon nanotubes (CNTs) can be classified as microtubule-stabilizing agents as they interact with protein microtubules (MTs), leading to interference in the mitosis process. CNTs hold a substantial promising application in cancer therapy in conjunction with other c...

متن کامل

Microtubules Orient the Mitotic Spindle in Yeast through Dynein-dependent Interactions with the Cell Cortex

Proper orientation of the mitotic spindle is critical for successful cell division in budding yeast. To investigate the mechanism of spindle orientation, we used a green fluorescent protein (GFP)-tubulin fusion protein to observe microtubules in living yeast cells. GFP-tubulin is incorporated into microtubules, allowing visualization of both cytoplasmic and spindle microtubules, and does not in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 151  شماره 

صفحات  -

تاریخ انتشار 2000